/ lunes 14 de junio de 2021

Científicos investigan la resistencia de las plantas a la sequía

Maíz, frijol y arroz tienen una alta capacidad para sobrevivir con poca agua, mecanismo que buscan aplicar en la industria agrícola

Investigadores de la Facultad de Química buscan comprender los mecanismos moleculares con que ciertas plantas y organismos vivos hacen frente a las sequías y ambientes con poca disposición de agua, a fin de utilizarlos en la industria agrícola y contrarrestar las repercusiones por el cambio climático, refirió el académico del departamento de Bioquímica de la Facultad de Química, César Cuevas Velázquez, quien ubicó a semillas de plantas como maíz, frijol y arroz entre los organismos con alta capacidad de lidiar con la escasez de agua, “que pueden perder prácticamente todo su contenido de agua y, en condiciones adecuadas, germinar”.

“Nuestro trabajo en el laboratorio busca entender cómo las células perciben y responden a condiciones de baja disponibilidad de agua, lo cual lleva a pensar inmediatamente en las plantas, porque son organismos capaces de vivir en condiciones donde el agua es limitada, como es el caso de las cactáceas”, explicó al dictar la conferencia En búsqueda de los mecanismos de percepción celular del ambiente.

El académico dijo que en estos procesos se presenta la acumulación de las llamadas proteínas LEA (o proteínas abundantes en la embriogénesis tardía; siglas en inglés de Late Embryogenesis Abundant), las cuales se acumulan en grandes cantidades en las semillas secas, pero también en tejidos vegetativos y reproductivos, como raíces, tallos, hojas y flores cuando hay condiciones de déficit hídrico.

“La acumulación de estas proteínas se encuentra íntimamente relacionada con condiciones de baja disponibilidad de agua; sin embargo, no se sabe bien a bien cuál es su función dentro de la planta. Se ha propuesto que previenen que otras proteínas dentro de la célula pierdan su función cuando hay condiciones de desecación.”

La mayoría de las LEA “tienen una estructura intrínsecamente desordenada”, indicó. “Durante mi doctorado estudié una proteína LEA y encontré que cambian su estructura de acuerdo con las condiciones del ambiente; lo cual podría ser de utilidad para desarrollar herramientas que nos permitan entender procesos fundamentales a nivel celular. Por ello, propusimos desarrollar un biosensor capaz de monitorear cómo el ambiente osmótico y el amontonamiento macromolecular cambian en células vivas en respuesta a estrés”.

Generación de biosensores

Al hablar sobre sus líneas de investigación en el Departamento de Bioquímica de la FQ, Cuevas Velázquez mencionó que busca, junto con su grupo de investigación integrado por tesistas de licenciatura y posgrado, “sintetizar proteínas intrínsecamente desordenadas de diferentes organismos como plantas y animales, para generar nuevos biosensores y evaluar su comportamiento en condiciones de estrés osmótico”.

Esos biosensores, añadió, se utilizarán para investigar cómo las células pueden percibir y responder a condiciones de choques osmóticos en la planta modelo Arabidopsis thaliana, así como en algunos hongos que pueden soportar altas concentraciones de sal, además de células humanas y de ratón, a fin de conocer “cómo el estrés osmótico podría regular la formación de un complejo multiprotéico, conocido como inflamasoma; esto en una colaboración con la Universidad Autónoma del Estado de Morelos y el Instituto de Biotecnología de la UNAM”.

Suscríbete a nuestro canal

Investigadores de la Facultad de Química buscan comprender los mecanismos moleculares con que ciertas plantas y organismos vivos hacen frente a las sequías y ambientes con poca disposición de agua, a fin de utilizarlos en la industria agrícola y contrarrestar las repercusiones por el cambio climático, refirió el académico del departamento de Bioquímica de la Facultad de Química, César Cuevas Velázquez, quien ubicó a semillas de plantas como maíz, frijol y arroz entre los organismos con alta capacidad de lidiar con la escasez de agua, “que pueden perder prácticamente todo su contenido de agua y, en condiciones adecuadas, germinar”.

“Nuestro trabajo en el laboratorio busca entender cómo las células perciben y responden a condiciones de baja disponibilidad de agua, lo cual lleva a pensar inmediatamente en las plantas, porque son organismos capaces de vivir en condiciones donde el agua es limitada, como es el caso de las cactáceas”, explicó al dictar la conferencia En búsqueda de los mecanismos de percepción celular del ambiente.

El académico dijo que en estos procesos se presenta la acumulación de las llamadas proteínas LEA (o proteínas abundantes en la embriogénesis tardía; siglas en inglés de Late Embryogenesis Abundant), las cuales se acumulan en grandes cantidades en las semillas secas, pero también en tejidos vegetativos y reproductivos, como raíces, tallos, hojas y flores cuando hay condiciones de déficit hídrico.

“La acumulación de estas proteínas se encuentra íntimamente relacionada con condiciones de baja disponibilidad de agua; sin embargo, no se sabe bien a bien cuál es su función dentro de la planta. Se ha propuesto que previenen que otras proteínas dentro de la célula pierdan su función cuando hay condiciones de desecación.”

La mayoría de las LEA “tienen una estructura intrínsecamente desordenada”, indicó. “Durante mi doctorado estudié una proteína LEA y encontré que cambian su estructura de acuerdo con las condiciones del ambiente; lo cual podría ser de utilidad para desarrollar herramientas que nos permitan entender procesos fundamentales a nivel celular. Por ello, propusimos desarrollar un biosensor capaz de monitorear cómo el ambiente osmótico y el amontonamiento macromolecular cambian en células vivas en respuesta a estrés”.

Generación de biosensores

Al hablar sobre sus líneas de investigación en el Departamento de Bioquímica de la FQ, Cuevas Velázquez mencionó que busca, junto con su grupo de investigación integrado por tesistas de licenciatura y posgrado, “sintetizar proteínas intrínsecamente desordenadas de diferentes organismos como plantas y animales, para generar nuevos biosensores y evaluar su comportamiento en condiciones de estrés osmótico”.

Esos biosensores, añadió, se utilizarán para investigar cómo las células pueden percibir y responder a condiciones de choques osmóticos en la planta modelo Arabidopsis thaliana, así como en algunos hongos que pueden soportar altas concentraciones de sal, además de células humanas y de ratón, a fin de conocer “cómo el estrés osmótico podría regular la formación de un complejo multiprotéico, conocido como inflamasoma; esto en una colaboración con la Universidad Autónoma del Estado de Morelos y el Instituto de Biotecnología de la UNAM”.

Suscríbete a nuestro canal

Seguridad

Extorsiones y robo de vehículo crecen entre empresarios de la construcción

En las últimas semanas, los empresarios de la construcción han recibido varios intentos de extorsión y amenazas, lamenta el líder de la CMIC en Morelos

Elecciones 2024

Hay que debatir; hay que confrontar ideas: Lucy Meza

La candidata de la coalición Dignidad y seguridad por Morelos, vamos todos, lamentó que la candidata a la gubernatura Margarita González Saravia haya impugnado el acuerdo del Impepac para realizar dos debates

Cultura

El Callejón del Libro se consolida como el sitio favorito de lectores

Este lugar se ha convertido en un imperdible dentro del centro de Cuernavaca y este 2024 cumple 15 años de ser el favorito de los lectores morelenses

Cultura

[Extranjeros en Morelos] Zapata, el único revolucionario que luchó sin intereses personales

Los siguientes son fragmentos del libro "La sociedad mexicana durante la Revolución", del inglés John Rutherford, que realizó investigaciones en México

Cultura

¡Arma el plan! Actividades culturales este fin de semana en Morelos

¡Arma tu plan este fin de semana! la cartelera del 19 al 25 de abril trae un listado de actividades culturales en Morelos

Seguridad

FEUM prepara nueva estrategia de seguridad al interior del campus Chamilpa

La Federación de Estudiantes contempla "rondines estudiantiles" en coordinación con el personal de Venados como parte de la nueva estrategia de seguridad